2020
 PHYSICS - GENERAL
 Practical Paper
 PAPER: IVB

Full Marks: 50

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Module I (Computer lab)

Marks-25
Answer any one from the following questions.

1. Write a program in C or Fortran to sort the following numbers in ascending and descending order. Also find the smallest and largest number.
[43, 67, 32, 87, 21, 9, 98, 67]
2. Write a program in C or Fortran to find the mean, median and mode of the following numbers-
[33, 55, 77, 22, 99, 11, 66, 44, 88]
3. Write a program in C or Fortran to find the real or imaginary roots of the following quadratic equation-

$$
7 x^{2}-5 x+9=0
$$

4. Write a program in C or Fortran to add and subtract following two 3×3 matrices-
$\left[\begin{array}{ccc}3 & 5 & -2 \\ 7 & -3 & 6 \\ -9 & 6 & 3\end{array}\right]$ and $\left[\begin{array}{ccc}-4 & 5 & 7 \\ 2 & -8 & 9 \\ 6 & 3 & -7\end{array}\right]$

Module II

Marks-25

Answer any one from the following questions.

5. To use OP AMP as non-inverting amplifier -
(a) Draw the circuit diagram.
(b) Calculate V_{0}, when $\mathrm{V}_{\mathrm{i}}=0.1 \mathrm{~V}, 0.2 \mathrm{~V}, 0.4 \mathrm{~V}, 0.5 \mathrm{~V}, 0.7 \mathrm{~V}$.
[Given, $\mathrm{R}_{1}=1 \mathrm{k} \Omega, \mathrm{R}_{2}=10 \mathrm{k} \Omega$]
(c) Calculate gain in each case.
(d) Draw a graph V_{0} against V_{i}.
(e) What are the characteristics of an ideal OP AMP ?
6. To use OP AMP as inverting amplifier -
(a) Draw the circuit diagram.
(b) Calculate V_{0}, when $\mathrm{V}_{\mathrm{i}}=0.1 \mathrm{~V}, 0.3 \mathrm{~V}, 0.4 \mathrm{~V}, 0.6 \mathrm{~V}, 0.8 \mathrm{~V}$.
[Given, $\mathrm{R}_{1}=1 \mathrm{k} \Omega, \mathrm{R}_{2}=5 \mathrm{k} \Omega$]
(c) Calculate gain in each case.
(d) Draw a graph V_{0} against V_{i}.
(e) Mention some of the uses of OP AMP ?
7. To use OP AMP as differential amplifier -
(a) Draw the circuit diagram.
(b) Calculate V_{0}, when $\mathrm{V}_{1}=0.1 \mathrm{~V}, \mathrm{~V}_{2}=0.2 \mathrm{~V}$; when $\mathrm{V}_{1}=0.2 \mathrm{~V}, \mathrm{~V}_{2}=0.5 \mathrm{~V}$; when V_{1} $=0.3 \mathrm{~V}, \mathrm{~V}_{2}=0.7 \mathrm{~V}$; when $\mathrm{V}_{1}=0.4 \mathrm{~V}, \mathrm{~V}_{2}=0.9 \mathrm{~V}$; and when $\mathrm{V}_{1}=0.4 \mathrm{~V}, \mathrm{~V}_{2}=1 \mathrm{~V}$.
[Given, $\mathrm{R}_{1}=1 \mathrm{k} \Omega, \mathrm{R}_{2}=10 \mathrm{k} \Omega$]
(c) Calculate gain in each case.
(d) Draw a graph V_{0} against V_{i}.
(e) What do you understand by virtual ground of an OP AMP ?
8. To use OP AMP as three input adder -
(a) Draw the circuit diagram.
(b) Calculate V_{0}, when $\mathrm{V}_{1}=0.1 \mathrm{~V}, \mathrm{~V}_{2}=0.2 \mathrm{~V}, \mathrm{~V}_{3}=0.3 \mathrm{~V}$; when $\mathrm{V}_{1}=0.2 \mathrm{~V}, \mathrm{~V}_{2}=0.3$
$\mathrm{V}, \mathrm{V}_{3}=0.5 \mathrm{~V}$; when $\mathrm{V}_{1}=0.3 \mathrm{~V}, \mathrm{~V}_{2}=0.5 \mathrm{~V}, \mathrm{~V}_{3}=0.6 \mathrm{~V}$; and when $\mathrm{V}_{1}=0.4 \mathrm{~V}, \mathrm{~V}_{2}=0.6$
$\mathrm{V}, \mathrm{V}_{3}=0.8 \mathrm{~V}$. [Given, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{f}}=5 \mathrm{k} \Omega$]
(c) Draw a graph V_{0} against V_{i}.
(d) Why is an OP AMP usually used with a negative feedback ?
(e) What is offset null adjustment of an OP AMP ?
9. To convert a given ammeter into a voltmeter -
(a) Draw the circuit diagram.
(b) Write down the working formula.
(c) Find out the multiplier resistance $\left(\mathrm{R}_{\mathrm{s}}\right)$, for current $\left(\mathrm{I}_{\mathrm{m}}\right)=100 \mu \mathrm{~A}$, voltage $(\mathrm{V})=1 \mathrm{~V}$ and internal resistance $\left(R_{m}\right)$ of the ammeter, $R_{m}=1 \mathrm{k} \Omega$.
(d) Using following data draw a calibration graph of prepared voltmeter reading $\left(\mathrm{V}_{\text {prep }}\right)$ against standard voltmeter reading $\left(\mathrm{V}_{\text {std }}\right)$, for conversion of an ammeter of range (0-100) $\mu \mathrm{A}$ into a voltmeter of range $(0-1) \mathrm{V}$.

$\mathrm{V}_{\text {prep }}($ Volt $)$	0.1	0.2	0.3	0.5	0.7
$\mathrm{~V}_{\text {std }}($ Volt $)$	0.15	0.25	0.35	0.55	0.75

10. To convert a given voltmeter into an ammeter -
(a) Draw the circuit diagram.
(b) Write down the working formula.
(c) Find out the shunt resistance $\left(\mathrm{R}_{\text {sh }}\right)$, where current for full deflection of voltmeter $\left(\mathrm{I}_{\mathrm{m}}\right)=$ $100 \mu \mathrm{~A}, \mathrm{I}=100 \mathrm{~mA}$, voltage $(\mathrm{V})=1 \mathrm{~V}$ and internal resistance $\left(\mathrm{R}_{\mathrm{m}}\right)$ of the ammeter, R_{m} $=10 \mathrm{k} \Omega$.
(d) Using following data draw a calibration graph of prepared ammeter reading ($\mathrm{I}_{\mathrm{prep}}$) against standard ammeter reading $\left(\mathrm{I}_{\text {std }}\right)$, for conversion of a voltmeter of range ($0-1$) V to an ammeter of range $(0-100) \mathrm{mA}$.

$\mathrm{I}_{\text {prep }}(\mathrm{mA})$	10	20	40	60	80
$\mathrm{I}_{\text {std }}(\mathrm{mA})$	15	25	45	65	85

