2020 PHYSICS – GENERAL Practical Paper PAPER: IVB Full Marks: 50

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Module I (Computer lab)

Marks-25

Answer any one from the following questions.

1. Write a program in C or Fortran to sort the following numbers in ascending and descending order. Also find the smallest and largest number.

[43, 67, 32, 87, 21, 9, 98, 67]

2. Write a program in C or Fortran to find the mean, median and mode of the following numbers-

[33, 55, 77, 22, 99, 11, 66, 44, 88]

3. Write a program in C or Fortran to find the real or imaginary roots of the following quadratic equation-

$$7x^2 - 5x + 9 = 0$$

4. Write a program in C or Fortran to add and subtract following two 3×3 matrices-

[3	5	-21		[-4	5	ן 7
7	-3	6	and	2	-8	9
L-9	6	3		l 6	3	-7

Please Turn Over

Module II

Marks-25

Answer any one from the following questions.

5. To use OP AMP as non-inverting amplifier –	
(a) Draw the circuit diagram.	
(b) Calculate V_0 , when $V_i = 0.1$ V, 0.2 V, 0.4 V, 0.5 V, 0.7 V.	
[Given, $R_1 = 1 \ k\Omega$, $R_2 = 10 \ k\Omega$]	
(c) Calculate gain in each case.	
(d) Draw a graph V_0 against V_i .	
(e) What are the characteristics of an ideal OP AMP ?	(5+5+5+8+2)
6. To use OP AMP as inverting amplifier –	
(a) Draw the circuit diagram.	
(b) Calculate V_0 , when $V_i = 0.1$ V, 0.3 V, 0.4 V, 0.6 V, 0.8 V.	
[Given, $R_1 = 1 \ k\Omega$, $R_2 = 5 \ k\Omega$]	
(c) Calculate gain in each case.	
(d) Draw a graph V_0 against V_i .	
(e) Mention some of the uses of OP AMP ?	(5+5+5+8+2)
7. To use OP AMP as differential amplifier –	
(a) Draw the circuit diagram.	
(b) Calculate V_0 , when $V_1 = 0.1$ V, $V_2 = 0.2$ V; when $V_1 = 0.2$ V, V	$V_2 = 0.5 \text{ V}$; when V_1
= 0.3 V, V_2 = 0.7 V ; when V_1 = 0.4 V, V_2 = 0.9 V ; and when V_1	$= 0.4 V, V_2 = 1 V.$
[Given, $R_1 = 1 \ k\Omega$, $R_2 = 10 \ k\Omega$]	
(c) Calculate gain in each case.	
(d) Draw a graph V_0 against V_i .	

(e) What do you understand by virtual ground of an OP AMP ? (5+5+5+8+2)

Please Turn Over

- 8. To use OP AMP as three input adder –
- (a) Draw the circuit diagram.
- (b) Calculate V_0 , when $V_1 = 0.1$ V, $V_2 = 0.2$ V, $V_3 = 0.3$ V; when $V_1 = 0.2$ V, $V_2 = 0.3$
- V, $V_3 = 0.5$ V; when $V_1 = 0.3$ V, $V_2 = 0.5$ V, $V_3 = 0.6$ V; and when $V_1 = 0.4$ V, $V_2 = 0.6$
- V, V₃ = 0.8 V . [Given, $R_1 = R_2 = R_3 = 1 \ k\Omega$, $R_f = 5 \ k\Omega$]
- (c) Draw a graph V_0 against V_i .
- (d) Why is an OP AMP usually used with a negative feedback ?
- (e) What is offset null adjustment of an OP AMP ? (5+8+8+2+2)

9. To convert a given ammeter into a voltmeter -

- (a) Draw the circuit diagram.
- (b) Write down the working formula.

(c) Find out the multiplier resistance (R_s), for current (I_m) = 100 μ A, voltage (V) = 1 V and internal resistance (R_m) of the ammeter, $R_m = 1 \ k\Omega$.

(d) Using following data draw a calibration graph of prepared voltmeter reading (V_{prep}) against standard voltmeter reading (V_{std}), for conversion of an ammeter of range (0–100) μ A into a voltmeter of range (0–1) V.

V _{prep} (Volt)	0.1	0.2	0.3	0.5	0.7
V _{std} (Volt)	0.15	0.25	0.35	0.55	0.75

(5+5+5+10)

10. To convert a given voltmeter into an ammeter -

(a) Draw the circuit diagram.

(b) Write down the working formula.

(c) Find out the shunt resistance (R_{sh}), where current for full deflection of voltmeter (I_m) = 100 μ A , I = 100 mA , voltage (V) = 1 V and internal resistance (R_m) of the ammeter, R_m = 10 k Ω .

(d) Using following data draw a calibration graph of prepared ammeter reading (I_{prep}) against standard ammeter reading (I_{std}), for conversion of a voltmeter of range (0–1) V to an ammeter of range (0–100) mA.

I _{prep} (mA)	10	20	40	60	80
I _{std} (mA)	15	25	45	65	85

(5+5+5+10)